Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4.
نویسندگان
چکیده
We theoretically and experimentally demonstrate that carbon self-doping could induce intrinsic electronic and band structure change of g-C(3)N(4)via the formation of delocalized big π bonds to increase visible light absorption and electrical conductivity as well as surface area and thus enhance both photooxidation and photoreduction activities.
منابع مشابه
Functionalized Graphitic Carbon Nitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device via Direct Laser-Writing
Graphitic carbon nitride nanosheet (g-C3N4-NS) has layered structure similar with graphene nanosheet and presents unusual physicochemical properties due to the s-triazine fragments. But their electronic and electrochemical applications are limited by the relatively poor conductivity. The current work provides the first example that atomically thick g-C3N4-NSs are the ideal candidate as the acti...
متن کاملC/N- Materials for Artificial Photosynthesis, Heterogeneous Organocatalysis and Green Electronics
Some recent observations made polymeric graphitic Carbon Nitride (ideally C3N4)n a nice extension to current semiconducting organic system. This is due to the ease of synthesis, but also due to its extreme chemical stability. Made from urea under early-Earth conditions, as reported already by Justus Liebig in 1832, it just recently turned out to be a novel catalyst whichamong other reactionscan...
متن کاملVisible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride
In recent years, graphitic carbon nitride (g-C3N4) has received substantial interest as a photocatalyst for metal-free, visiblelight promoted reactions. It exhibits a graphite-like, layered structure wherein tris-triazine units are connected through C–N-bonds forming a two-dimensional layer. g-C3N4 can be synthesized via various methods such as pyrolysis of urea or other nitrogen-rich precursor...
متن کاملThe synergy between Ti species and g-C3N4 by doping and hybridization for the enhancement of photocatalytic H2 evolution.
A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical r...
متن کاملPost-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis.
Hollow-structured g-C3N4 polymers with a high thermal stability up to 550 °C and an enhanced photocatalytic activity have been developed by post-annealing treatment, which effectively modifies the textural, crystal, and electronic properties of the g-C3N4 semiconductors without extra chemical assistance. This is a unique example of thermally and chemically stable conjugated polymers with hollow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 48 49 شماره
صفحات -
تاریخ انتشار 2012